PHYSICAL REVIEW E 73, 066605 (2006)
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A. I. Yakimenko,"? V. M. Lashkin,' and O. O. Prikhodko®
Unstitute for Nuclear Research, Prospect Nauki 47, Kiev 03680, Ukraine
2Physical Department, Taras Shevchenko National University, Prospect Glushkova 2, Kiev 03680, Ukraine
(Received 8 February 2006; published 6 June 2006)

We study stability and dynamics of the single cylindrically symmetric solitary structures and dipolar soli-
tonic molecules in spatially nonlocal media. The main properties of the solitons, vortex solitons, and dipolar
solitons are investigated analytically and numerically. The vortices and higher-order solitons show the trans-
verse symmetry-breaking azimuthal instability below some critical power. We find the threshold of the vortex
soliton stabilization using the linear stability analysis and direct numerical simulations. The higher-order
solitons, which have a central peak and one or more surrounding rings, are also demonstrated to be stabilized
in nonlocal nonlinear media. Using direct numerical simulations, we find a class of radially asymmetric,
dipolelike solitons and show that, at sufficiently high power, these structures are stable.
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I. INTRODUCTION

The recent experimental observations of spatial solitons in
nonlocal media such as nematic liquid crystals [1], lead
glasses [2], renewed an interest to coherent structures in spa-
tially nonlocal nonlinear media. In the spatially nonlocal me-
dia the nonlinear response depends on the wave packet in-
tensity at some extensive spatial domain. Nonlocality is a
key feature of many nonlinear media. It naturally appears in
different physical systems such as plasmas [4,5], Bose-
Einstein condensates (BEC) [6], optical media [7], atomic
nuclei [8], liquid crystals [1], and soft matter [9].

An important property of spatially nonlocal nonlinear re-
sponse is that it prevents a catastrophic collapse which usu-
ally occurs in local self-focusing media when the power of
the two- or three-dimensional wave packet exceeds some
critical value. In particular, a rigorous proof of absence of
collapse during the wave-packet propagation described by
the nonlocal nonlinear Schrodinger equation (NLSE) with
sufficiently general symmetric real-valued response kernel
has been presented in Refs. [7,10]. In the absence of col-
lapse, the competition between diffraction spreading and
nonlinear self-action leads to formation of the stationary soli-
tary wave structures—solitons and vortex solitons. Different
types of two-dimensional self-trapped localized wave beams
have been predicted and experimentally observed in various
nonlinear media [11].

Fundamental solitons are the lowest-order localized struc-
tures with a single peak in the intensity distribution and
transversely constant phase. A vortex is the structure with
ringlike intensity distribution, with the dark hole at the center
where the phase dislocation takes place: a phase circulation
around the axis of propagation is equal to 27rm. An integer m
is referred to as topological charge. The important integral of
motion associated with this type of solitary wave is the an-
gular momentum, which can be expressed through the vortex
power N and topological charge m as follows: |M|=mN.
Thus, vortices (or spinning solitons) are the localized struc-
tures with nonzero angular momentum. While the fundamen-
tal solitons are robust in a collapse-free media, the spinning
solitons may possess a strong azimuthal modulational insta-
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bility [12]. As a result, the vortex decays into several ordi-
nary solitons which fly off carrying out its energy and angu-
lar momentum. Though vortices can be stabilized in media
with competing local nonlinearities [ 13—16], it occurs only in
the extreme regime when the higher-order contribution to the
nonlinearity dominates. The recent investigations [17,18]
have shown that the different kinds of nonlocality of the
nonlinear response can also suppress or completely eliminate
the symmetry-breaking azimuthal instability for one-ring and
double-ring single-charge (m=1) vortex solitons. The recent
experiments [2] have confirmed an existence of stable single-
charge vortex solitons in the nonlocal media with thermal
optical nonlinearity. The multicharge vortices (m > 1) are un-
stable in the media with thermal nonlocal nonlinearity, as
was shown in Ref. [17] by linear stability analysis of small
azimuthal perturbations and direct numerical modeling. On
the other hand, the robust propagation of two-charge vortex
(m=2) solitons has been observed in the numerical simula-
tions [ 18] for the model based on Gaussian-type kernel of the
nonlocal media response function. We perform here the lin-
ear stability analysis for the model used in Ref. [18] and
prove the possibility of stabilization of multicharge vortex
solitons in the nonlocal nonlinear media.

The higher-bound solitons with field nodes (zero crossing)
have been first discovered in Ref. [30] for the local Kerr-type
nonlinear media. The nth bound state has a central bright
spot surrounded by #n rings of varying size. In the local non-
linear media the higher-order solitons with zero angular mo-
mentum show the azimuthal instability [31,32] similar to the
instability of the vortex solitons. The rings which surround
the central peak possess a symmetry-breaking instability. As
a result, the higher-bound structures decay into several fun-
damental solitons. We reveal here that nonspinning higher-
order solitons can be stabilized in the nonlocal medium.

Another important feature of nonlocal nonlinear media is
the possibility of existence of composite soliton structures. A
composite soliton structure, or a multisoliton complex is a
self-localized state which is a nonlinear superposition of sev-
eral fundamental solitons [3,20-22]. Multisoliton structures
in nonlocal media were considered first in Refs. [23,24], and
they have recently received renewed interest [25-27]. In par-
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FIG. 1. (a) Number of quanta N vs parameter A=A/a? for solitons (n=0, m=0) and vortex solitons (n=0, m=1,2) (solid curves for
variational and circles for numerical results). Numerically found profiles for (b) A=0.05; (c) A=0.5; (d) A=5. Solid curves for '(r")
=/ a dashed curves for 6'(r")= 6/ a?; the scaled coordinates r' = ar are used.

ticular, the one-dimensional (1D) nonlocal model suggested
in Ref. [4] was studied in Ref. [27] and it was shown that
dipole-, triple-, and quadrupole-mode solitons can be made
stable. Very recently [28] two-dimensional (2D) rotating di-
pole structures were considered in the framework of an ap-
proximate variational approach. In this paper, using direct
2D simulations, we find numerically a class of radially asym-
metric two-dimensional nonrotating dipole-mode soliton so-
lutions and show that, at sufficiently high input power, these
solutions are stable.

The aim of this paper is to study general properties and to
carry out the stability analysis of single solitons (both funda-
mental and higher-bound states), vortex solitons, and com-
posite dipole-like solitons in the strongly nonlocal media.

The paper is organized as follows. In Sec. II we formulate
a model and present basic equations. The stability analysis
based on the variational approach and numerical simulations
for single solitary structures is performed in Sec. III, and
then, in Sec. IV, we consider the multisoliton dipolelike
structures. The conclusions are given in Sec. V.

II. BASIC EQUATIONS

We consider propagation of the electric-field envelope
W(x,y,z) described by the paraxial wave equation,

(al)

av
ia_"'AL\P‘*'@\P:O» (1)
<

where z is the direction of beam propagation, © represents
the nonlinear response of the media.

Equation (1) conserves the following integrals of motion:
(i) number of quanta (“energy” or “beam power”),

N= J |V 2d°r; (2)
(i1) momentum,

I, =- % f (W'V, W - WV, W) r;

(iii) angular momentum,
M=- % f [r X (V'V, ¥ -WV ¥)]dr;
(iv) Hamiltonian,

1
H:f <|Vl\lf|2 - 5®|‘If|2>d2r.

The nonlocal nonlinear media response function can be
taken as follows:
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FIG. 2. (a) Number of quanta N vs parameter A=A/a? for higher-order solitons (m=0, n=1,2). Radial profiles for (b) A=0.05; (c) A

=0.5; (d) A=5. Solid curves for ¢ dashed curves for 6'.
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FIG. 3. (Color online) The scaled growth rate y=Im w/a? of
linear perturbation modes vs the parameter A=A/ a? for the vortices
with (a) m=1 and (b) m=2, the inset depicts the growth rates of the
high-L modes in more details. The numbers near the curves stand
for the azimuthal mode numbers L.

Or) = f R(lr = 1) [ (e) Pr,. )

The shape of the kernel R(r) is determined by the type of
the nonlocal interaction in media and can be rather compli-
cated [6,17]. However, there are general properties valid for
all nonlocal media response functions. The nonlinear term
tends to the local Kerr-type nonlinearity: ® — |W|?> when the
spatial scale of the wave-packet intensity distribution |¥|? is
much wider than the effective width of the potential R(r). In
the opposite case of the strongly nonlocal regime, the re-
sponse function can be estimated as follows: @(r)=N[R(O)
+ %AR(O)rz]. In the latter case, the highly nonlocal NLSE (1)
with a sufficiently regular kernel R(r) is mathematically
identical to the linear Schrodinger equation with harmonic
oscillator potential, as was pointed out in Ref. [33]. Note, the
specific shape of the kernel R(r) in Eq. (3) is not too impor-
tant for highly nonlocal media provided R(r) is a regular
function.

We consider in this paper the nonlocal response function
kernel modeled by the Gaussian shape kernel,

a2 2 2
R(r—r)=—e -l 4)
a

where «a is the nonlocality parameter. Such a phenomeno-
logical model is of interest, e.g., for optical media [18].
Keeping the main features of nonlocal media this model al-
lows a very accurate and simple analytical treatment.

III. SINGLE SOLITARY STRUCTURES

In this section, we study single solitons (both fundamental
and higher-bound states) and vortex solitons. We look for the
stationary solutions of Eq. (1) in the form

W(x,y,2) = re e, (5)

where ¢ and r=vx?+y? are the azimuthal angle and the ra-
dial coordinate, respectively, and A is the beam propagation
constant. Such solutions describe either the soliton, when
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m=0, or the vortex soliton with the topological charge m,
when m # 0. The function (r) obeys the integro-differential
equation:

—AY+ A"+ 6y=0. (6)

The boundary conditions for the localized solutions are
#(0)=0 and (diy/ dr),-,=0 for solitons, ¢(0)=0 for vortices.
For the stationary solution (5) it is easy to rewrite the re-
sponse function in the form

400
0r) =207 f = T 2P )|l Prdry, (7)
0

where Z,(x)=e™*I,(x) is the exponentially scaled modified
Bessel function.

In the next section we start our considerations on the
single cylindrically symmetric solitary structures with the
analytical analysis based on the variational approach.

A. Variational approach

As known [33], the nonlocal NLSE turns to the linear
Schrodinger equation with harmonic oscillator potential in
the highly nonlocal limit, when the spatial scale of the re-
sponse function is much wider than the wave-packet local-
ization region. Since the Laguerre-Gauss modes are the exact
eigenstates for the two-dimensional linear oscillator, the
variational method with the trial function of the form

W(x,y,2) = h(z) gmLflm)(§2)e—(1/2)§2[1+ib(z)]+imgo+itb(z)’ (8)

is expected to give an accurate description of all eigenmodes,
especially in the highly nonlocal regime. Here L;m)(x) is the
generalized Laguerre polynomial, n is the number of nodes
of the radial profile, and m is the topological charge, &
=r/a(z), where a(z) is the first variational parameter that
characterizes a radius of solitary structure: a’=(r’)(2n+m
+1)7!, where (r?)=N-YW|r?|¥) is the mean-square radius.
The second variational parameter b(z) is the phase curvature.
The amplitude %(z) can be readily found from the relation
h(z)a(z)=+n!N/[m(n+m)!], which is obtained from normal-
ization condition (2).

We start our considerations with the lower-order nodeless
states (n=0). The nonlinear response function in the frame-
work of the variational approach is given by the expression

O(r) = i2qe™mi(1 - ¢)"L,(*E/ (g - 1)),

where g=a’a*/(1+a’a?), Lm(x)szs)(x) is Laguerre polyno-
mial of mth order. Note, if a’a?>1, then ¢— 1, and one
obtains ® — |W|?, as it should be in the local limit.

In accordance with the variational procedure, we con-
struct the Lagrangian density

O, L 1
= i(\lf— —v —) +|V, WP - 0P
2 oz 0z 2

and the Lagrangian
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(m+1)

N(bi - ba) +H,

£:J€d2r=N<I3+

where b=b/ a, H is the Hamiltonian,

th(a)>
2 9

H=N<(m +1)(1/a* +b?) -
2a

where hm(a)=q(1—q)’"(1+q)‘m‘1Pm(i—:“L§), P,,(x) is the Leg-
endre polynomial of the mth order. !

The first two dynamical equations can be written in the
canonical form

N(m+1)da JH Nm+1)db oH ©)

2 dz b’ 2 dz da
and the third one is the following: dN/dz=0, which means
that the number of quanta is the integral of motion. The
soliton or vortex soliton corresponds to the stationary point
of the Hamiltonian, dH/db=0, dH/da=0. The first condition
yields by=0. From the second equation one can find the
width a as the function of the number of quanta N. It is easy
to verify that vortex or soliton can exist only above the
threshold value for number of quanta: N>N,=4"*'7(m
+1)(m!)?/(2m)!. Using the similar procedure we have con-
sidered the nonspining (m=0) higher-bound states with one
(n=1) and two nodes (n=2). The thresholds for an existence
of the higher bound states are as follows: N_.=24m for n
=1 and N.,=6407/11 for n=2.

The described variational procedure provides the possibil-
ity for analysis of the stationary radially symmetric coherent
structures. The results of the variational analysis are given in
Fig. 1(a) for fundamental solitons and vortex solitons, and in
Fig. 2 for higher-order solitons.

Moreover, using the set (9) it is possible to study the
radially symmetric dynamics of the localized wave packets
propagating in the z direction. Let us investigate, for ex-
ample, the evolution of a slightly perturbed stationary soliton
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FIG. 4. Snapshots of |¥'(x’,y")| for different
z'. (a) Example of unstable evolution of single-
charge (m=1, n=0) vortex soliton with A=4. (b)
Dynamics with revival of the nonspinning (m
=0) one-node (n=1) soliton at A=35.

solution. It can easily be shown that the small deviation of
the soliton width d=a—a from the stationary value a, obeys
the equation &+w?8=0, where @’ =8N"'(PH/ da®) 4, -
Therefore, the soliton being radially perturbed exhibits the
oscillations with the frequency w=8a?m *(1-\N,,/N)*?,
where N..=41r is the threshold for soliton existence.

However, one cannot study the stability of stationary so-
lutions with respect to symmetry-breaking azimuthal pertur-
bations in the framework of a variational approach with a
radially symmetric trial function. Stability conditions of
steady-state solutions, regarding small general 2D perturba-
tions, will be obtained by a linear stability analysis in the
next section.

B. Numerical modeling

The boundary problem (6) is equivalent to the integral
equation

(r) = f o) ()G, rs VA nd 7, (10)
0

where 6 is given by Eq. (7),

K, (a&)l,(aé), 0<§ <&,

Gm(g"é;“)Z{Immgz)Km(aa), H<f < +o,

(11

where /,, and K,, are the modified Bessel functions of the
first and second kind, respectively. We have solved the non-
linear integral equation (10) using stabilized iterative method
[29]. For numerical modeling it is useful to perform the res-
caling transformation of the form: r'=ar, ¢'=y/a, ¢
=0/ a?, 7' =za?. Such transformation reduces the number of
parameters to one dimensionless parameter A=A/ a?. Figures
1(b)-1(d) show several examples of the numerical solution
of the (6) at different values of the parameter \. Note, that
the nonlocal limit o> <A corresponds to the large values of
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FIG. 5. The dipole solution ' =/« for N\=A/a?=40; the
scaled coordinates x’ =ax and y'=ay are used.

the parameter N and, as seen from Fig. 1(a), to the large
values of the beam power N. Thus, in rescaled variables, the
parameter A\ is the quantitative measure for the degree of
nonlocality.

Let us investigate the stability of the steady states with
respect to small azimuthal perturbations. Expanding the non-
stationary solution in vicinity of a steady state,

Y (r,z) = [lﬂ(l’) + O, + &ﬁi]eiAsz(p,

where 8, (r, @,7) =£.(r)e’®**L? and linearizing the dynami-
cal Eq. (1) one can obtain the eigenvalue problem for w of
the form

(Qm+L+§L gL
- 4L - On1— 8L

where £=(e,,e_), and [Im w| determines the growth rate of
an unstable mode,

>£=ws, (12)

Opsres=[- A+ A" 4 0(r) e,

81€:= 2a2¢(r)f W& x(r,H)e.(§)dE,
0

X(r,§)=§e‘“2(’_§)ZIL(2a2r§). The unperturbed radial profile
(r) is taken to be real without loss of generality. We have
used the Hankel spectral transformation and reduced the
integro-differential eigenvalue problem (12) to the linear al-
gebraic one. Figure 3(a) shows the maximum growth rate for
one-charge (m=1) vortex solitons. It is seen that only modes
having L=1,2,3 can be unstable. Modulational instability is
strongly suppressed in a highly nonlocal regime: the growth
rates vanish at some finite values of parameter . The mode
with azimuthal number L=2 corresponds to the largest
growth rates with widest instability region: all growth rates
are equal to zero at A > )\E_lr)%9.1. Similar analysis has been
performed for multicharge vortices (with m=2,...,5). Fig-
ure 3(b) depicts the growth rates for two-charge (m=2) vor-
tex solitons. Note that the modulation instability is elimi-
nated for N\>\?~23.8. Thus, in the media with the
nonlocal response of the form (4) the multicharge vortices
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can be stabilized. Note that vortex solitons with m>1 are
found [17] to be unstable in the media with thermal nonlocal
nonlinearity. Therefore, the dynamical properties of the vor-
tex structures can be significantly affected by specific type of
the nonlocal interaction as was pointed out also in Ref. [19].

The results of linear analysis have been confirmed by ex-
tensive series of numerical simulations of dynamics of per-
turbed stationary solutions. We have performed the split-step
Fourier transform method to solve the dynamical Eq. (1)
with the response function Eq. (3). The nonlocal nonlinear
term has been calculated in the spectral domain, since it has
the form of the convolution of the intensity distribution
|W(7)|* with the function R(|]). We have used the numeri-
cally found stationary vortex solitons and variational profiles
for the higher-order solitons as the initial conditions. Differ-
ent kinds of the perturbations such as random noise, radially
symmetric, and azimuthaly periodical perturbations have
been applied in the numerical experiments. The conclusions
of the linear stability analysis are found to be in a good
agreement with our simulations: the vortex solitons become
stable above some critical power which is close to the one
predicted by linear stability analysis.

Figure 4 (a) illustrates the unstable evolution of the
single-charge vortex soliton. In the stable region, when A
>N\, vortices survive even being strongly perturbed. The
mean-square radius and intensity of the vortex oscillate, but
the vortex ring shows the robust propagation over vast dis-
tances (thousands of diffraction lengths) for the hundreds of
the effective periods of the oscillation. The higher-order soli-
tons exhibit similar decay in weakly nonlocal regime. How-
ever, when beam power increases, an interesting dynamics
with revivals has been observed [see Fig. 4(b)]. Initially field
envelope decays into several filaments, but then it recurs at
larger propagation distances. With further increasing of the
power, a higher-order soliton occurs to be stabilized: it shows
the robust propagation without breakup during the hundreds
of effective oscillation periods.

IV. STABLE BISOLITON MOLECULES

In this section, we present and study localized asymmetric
dipolelike solutions. We look for stationary solutions of Eq.
(1) in the form W(x,y,z)=u(x,y)exp(iAz), so that the real
function ¢(x,y) obeys the equation

- A+ A g+ 64=0, (13)

where

2
=a_f e eyl (14)
T

and we do not assume the radial symmetry of (x,y). Unlike
the NLSE with local cubic nonlinearity, Eq. (13) with the
nonlocal nonlinear media response 6 given by Eq. (14) has
two characteristic transverse scales: the internal scale A'?
(in the NLS this scale determines the characteristic size of
the soliton) and the “external” scale « which is the measure
of nonlocality. Under this, the characteristic size of the self-
consistent potential well in Eq. (1) can significantly differ
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(b)

2=2500

15+

A=22

10+

FIG. 6. Snapshots of |’ (x’,y")| for dipole propagation in the presence of small random perturbation for different A=A/ a?, shown in the
scaled (x"=ax, y' =ay) plane, at different moments z: (a), (b) stable propagation; (c), (d) destruction of the original dipole; (), (f) decay into

two solitons.

from A2 and, thus, the existence of composite soliton
structures becomes possible. In this paper we restrict our-
selves to dipolelike localized solutions. Results concerning
the tripolar and higher radially asymmetric soliton modes
will be presented elsewhere.

As above, we use the scaled variables ¢', z’, x"=ax, and
y'=ay. Imposing periodic boundary conditions on Cartesian
grid and choosing an appropriate initial guess, one can find
numerically dipole-type localized solutions by using the re-
laxation technique similar to one described in Ref. [29]. An
example of such dipole solution is presented in Fig. 5. The
dipole consists of two out-of-phase monopoles. The charac-
teristic width of the monopoles in the dipole and the “dis-
tance” bzetween them decrease with increasing the parameter
N=A/a”

We next addressed the stability of these dipole solutions
and study the evolution (propagation) of the dipoles in the
presence of small initial perturbations. We have undertaken
extensive numerical modeling of Egs. (1), (3), and (4) ini-
tialized with our computed dipole-type solutions with added
gaussian noise. Spatial discretization was based on the pseu-
dospectral method and “temporal” z-discretization included
the split-step scheme. The numerical simulations clearly
show that the dipoles with A >\, where A=~ 21 is the criti-
cal value, are stable with respect to small initial noisy per-
turbations up to the maximum propagation distances used (of
the order of z’=3000). The stable propagation of the dipole
is illustrated in Figs. 6(a) and 6(b). Additionally, the stable
dynamics was monitored by plotting the 7z’ dependencies of
the averaged intensity [|¢*dr/N and mean-square radius
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z=0 z =1000 Z =2000
80
60
40
20
15 2 05 15 2 05
X X X

FIG. 7. (Color online) Evolution of the dipole solution with A
=400 in the presence of strong initial random perturbation; the
scaled variables x’ =ax, y’ =ay, and z’ =a?’z are used.

Jr*|yf?dr/N. For stable propagation, these quantities un-
dergo small oscillations near the equilibrium values. Note,
that dipoles with sufficiently large (compared to \,,) values
of \ survive over huge distances (many thousands of diffrac-
tion lengths) in the presence of quite significant perturba-
tions. We performed a series of runs for A >200 in the pres-
ence of strong initial noise. The initial condition was taken in
the form ' (x’,y")[1+ef(x",y’)], where ¢'(x',y’) is the nu-
merically calculated exact dipole solution, f(x’,y’) is the
white gaussian noise with variance 0°=1 and the parameter
of perturbation £=0.1+0.3. Snapshots of |/ (x',y")| at dif-
ferent 7' for the case A=400 and £=0.12 are presented in
Fig. 7. One can see that the dipole turns out to be extremely
robust-even at z'=2000 one can not detect any substantial
distortion of the dipole shape. The dipoles, however, become
unstable (even if the initial noise is very small) if N <X,
The typical unstable evolution of the dipole near the thresh-
old value of the rescaled propagation constant is shown in
Figs. 6(c) and 6(d).

The situation, however, changes below A, =~7.6. Under
this, the dipole splits in two monopoles which move in the
opposite directions without changing their shape, i.e., the
monopoles just go away at infinity. In Fig. 8 we plot the
dipole energy N, and the doubled energy 2N, where
Noon 18 the energy of the monopole soliton solution of Eq.

400

300

N  200f

1001

0 16 éO éO 40
A
FIG. 8. The doubled energy of the soliton (monopole) 2N,

(solid line) and the energy of the dipole Ng, (dashed line) vs the
parameter A=A/ a?.
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(a) (b)
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FIG. 9. Contour maps of the function £(B,u): (a) A=40; (b)
A=7.6

(13), calculated numerically, versus the propagation constant
A. One can see that the bound energy dN=Ngi,—2Ny,,, in the
dipole tends to almost zero as A approaches A\, =7.6. This
explains why the dipole with A<\, can be easily (i.e., un-
der the action of extremely small initial perturbations) split
into two monopole-type solitons.

The results of the numerical simulation can be illustrated
through the variational analysis. Equation (13) (in the scaled
variables) is the Euler-Lagrange equation for the Lagrangian

=f (|Vz//’|2—%6¢//’2+)\¢’2)d2r. (15)

Taking a trial function in the form
W — Ao PLE = di2P ey _ g P +d/2)2+y/2]’ (16)

where A, B, and d are unknown parameters to be determined
by the variational procedure, and substituting it into Eq. (15),
we get

2
a2l e A
L=mA2¢, 1 ¢+ \es |, (17)

where

e =1—(1 - p22)e ", (18)

1
= (14 D g o HIIHBY) _ 4= 3428240146y
B (1+p)
(19)

1 2
Q:E(l—e_“ 2, (20)

and, instead of d, we have introduced the variational param-
eter u=pd. The optimum A satisfies the equation JL/JA
=0 which yields
4ci+2Ne
A= 3 21)
C
The Lagrangian Eq. (17), where A? is defined by Eq. (21),
depends only on two unknown variational parameters 8 and
u (or, equivalently, B and d) and can be easily analyzed
numerically. The topography of the function L£(B,u) de-
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FIG. 10. (a) The dependence of the parameter
A in Eq. (16) on \. (b) Dipole distance d and the
width 87! vs \ (variational analysis).

25
k - -
18 ! d
2h 1
\ —1/B
1
|}
14} 1.5 \
< \
A Y
1 .
N
~
10+ ‘~~
0.5 e
6 — ’ ’ 0 ; - ;
10 20 30 20 40 60

A A

pends on the rescaled propagation constant N\=A/a?. There
is the only minimum if N>\, where A, is some critical
value. The contours (level lines) of the function £(8, ) for
A=40 are shown (in the vicinity of the minimum) in Fig.
9(a). In this case the minimum takes place at B=1.74 and
m=1.1 and corresponds to the dipole solution presented in
Fig. 5. The amplitude of the approximate analytical solution
calculated from Eq. (16) and the parameters 8 and w are in
very good agreement with corresponding values found from
the exact numerical solution. The dependence of the param-
eter A on \ is presented in Fig. 10(a). The dependence of the
width of the monopoles 87! in the dipole and the “distance”
d between them on \ is shown in Fig. 10(b). The topography
of the function £(3, x) in the vicinity of the minimum rep-
resents a long narrow valley oriented at some angle to the u
axis. Under this, the depth of the valley and the angle to the
w axis decreases with decreasing . A similar situation holds
for all >\, and we found Ay, =7.6. The picture changes
sharply at N=M\g,. The local minimum disappears and this
corresponds to the unstable dipole decaying into two mono-
poles. The contours of the function £(3, u) in this case (for
N=7.6) are shown in Fig. 9(b). The found critical value
Api=7.6 is in perfect agreement with the results of direct
numerical simulation (see Fig. 8).

V. SUMMARY AND CONCLUSIONS

We have investigated the main properties and stability of
the stationary two-dimensional localized solitary structures
in the nonlocal nonlinear media. We have studied both fun-
damental and higher-order solitons; one-charge and multi-
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charge vortex solitons with nonzero angular momentum; di-
polar multisolitons. While the fundamental soliton is always
stable, the vortex solitons possess a strong azimuthal insta-
bility which is eliminated only in the strongly nonlocal re-
gime. We have performed the linear stability analysis and
direct numerical simulations to investigate the stability of
vortices with arbitrary topological charge. We have found the
edge of the modulational instability and predicted the thresh-
old for the beam power of the robust vortex soliton. We
prove that in contrast to the nonlocal media with thermal
nonlinearity, the nonlinear response with the Gaussian-type
kernel can sustain not only single-charge but also multi-
charge vortices. We have investigated nonlocal higher-order
nonspinning solitons which are the structures with the inten-
sity distribution in the form of a bright spot surrounded by
the bright rings. We theoretically predict an existence of sta-
bilized higher-order nonspining solitons in the nonlocal me-
dia. Finally, we have found stationary dipolelike multisoli-
tons which are the bound states of the out-of-phase
fundamental solitons. We have simulated numerically the dy-
namics of the multisolitons in the presence of initial noise
and performed simple variational analysis. It turns out that
multisolitons are extremely robust at sufficiently high input
power in a highly nonlocal media. Therefore, these predic-
tions open the prospects for the experimental observations of
a wide class of stable coherent structures in various nonlocal
nonlinear media.
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